skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rucinski, Jordan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The chemical stabilities of hybrid perovskite materials demand further improvement toward long‐term and large‐scale photovoltaic applications. Herein, the enhanced chemical stability of CH3NH3PbI3is reported by doping the divalent anion Se2−in the form of PbSe in precursor solutions to enhance the hydrogen‐bonding‐like interactions between the organic cations and the inorganic framework. As a result, in 100% humidity at 40 °C, the 10% w/w PbSe‐doped CH3NH3PbI3films exhibited >140‐fold stability improvement over pristine CH3NH3PbI3films. As the PbSe‐doped CH3NH3PbI3films maintained the perovskite structure, a top efficiency of 10.4% with 70% retention after 700 h aging in ambient air is achieved with an unencapsulated 10% w/w PbSe:MAPbI3‐based cell. As a bonus, the incorporated Se2−also effectively suppresses iodine diffusion, leading to enhanced chemical stability of the silver electrodes. 
    more » « less